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What I call a flow on a C∗-algebra A was usually referred to as a strongly con-
tinuous one-parameter automorphism group of A until some time ago. This topic
was extensively studied in 1970’s and perhaps in 1980’s after the study of (everywhere-
defined and so bounded) derivations. At that time the focus was mainly on generators
and densely-defined derivations with models from statistical mechanics in mind. A typ-
ical question we asked was ”Characterize when a densely-defined derivation generates a
flow”. Another question was related to KMS states (or equilibrium states) asking, e.g.,
whether they exist uniquely or not. But I suppose this was a bit too vague. The only
result worth-mentioning is the uniqueness of KMS states for flows corresponding to the
one-dimensional lattice system (or bounded surface energy).

However, clever people soon deserted this field because I think no new results were
coming as expected after a general theory (mainly due to Bratteli and Robinson) and some
specific results pertaining to AF algebras (mainly due to Sakai) had been established.

See Bratteli-Robinson’s book (1979,1981) and Sakai’s book (1991) for all these up to
around 1980. (Sakai’s book is relatively new, but I suppose the main body of the book
was written long before.) See also Bratteli’s lecture note ”Derivations, dissipations and
group actions on C∗-algebras” (1986) for some progress made after.

**

1 Introduction

By a flow α on a C∗-algebra A we mean a continuous homomorphism α : R → Aut(A),
where Aut(A) is the automorphism group of A equipped with the topology of point-wise
convergence.

By an α-cocycle u we mean that u is a continuous map from R into the unitary
group of the multiplier algebra M(A) of A with the strict topology such that usαs(ut) =
us+t, s, t ∈ R. If u is an α-cocycle then t 7→ Adutαt is a flow, called a cocycle perturbation
of α.

Our far-reaching goal would be classifying the flows up to cocycle perturbations. Since
we are not anywhere near this goal, I will first review, as an introduction, two extreme
cases, almost uniformly continuous flows and Rohlin flows. Although Rohlin flows
form an interesting subject (and may be the only class of flows susceptible of classifica-
tion) we will not discuss here; instead focus on flows which are more interesting from a



physical point of view. Namely we will discuss the flows which are approximately in-
ner, asymptotically inner, quasi-diagonal, or pseudo-diagonal. If the C∗-algebra
is quasi-diagonal, pseudo-diagonality is the weakest condition among those and implies
the existence of KMS states.

**
We then briefly discuss cocycles; norm-continuous cocycles are describable in a sense

and general cocycles can be approximated by norm-continuous one, which is, I think,
very much different from the case of von Neumann algebras. We note that the above four
conditions are all invariant under cocycle perturbations as expected.

The obvious invariant for cocycle conjugate classes of flows are crossed products
with dual flows (action), due to Takesaki and Takai. We note that the flows we are
interested in have KMS states (if the C∗-algebra is unital and finite) and that the traces
of the crossed product is described in terms of KMS states (under a mild assumption).
The ideal structure of the crossed product could be obtained by studying the ground state
(and ceiling state) representations. We will try to describe such crossed products and then
conclude the talk by proposing the problem of classifying such crossed products.

**

2 Flows; extreme cases

Let A be a C∗-algebra. We denote by M(A) the multiplier algebra of A. The strict
topology on M(A) is determined by x 7→ ‖ax‖ and x 7→ ‖xa‖ with a ∈ A. If A is unital
then M(A) = A and the strict topology is equivalent to the norm topology.

We call α a flow on A if α is a one-parameter automorphism group of A such that
t 7→ αt(x) is continuous for all x ∈ A.

Definition 2.1 We call α inner if there is a unitary flow u in M(A) such that

αt(x) = Adut(x) = utxu
∗
t , x ∈ A

and t 7→ ut is continuous in the strict topology.
We call α universally weakly inner if there is a unitary flow U in A∗∗ such that

αt = AdUt|A and t 7→ Ut is continuous in the weak∗ topology.
We call α uniformly continuous if ‖αt − id‖ → 0 as t→ 0.
We call α almost uniformly continuous if for any α-invariant ideal I of A the

induced flow on A/I has a non-zero invariant hereditary C∗-subalgebra on which it is
uniformly continuous. (Then every ideal of A is α-invariant.)

**
If α is uniformly continuous then the generator

δα = lim
t→0

αt − id

t
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is a bounded operator on A and satisfies

δα(x)∗ = δα(x∗), x ∈ A

and
δα(xy) = xδα(y) + δα(x)y, x, y ∈ A.

A linear operator satisfying these two conditions is called a derivation and is automat-
ically bounded. An example of derivation is an inner derivation x 7→ ad ih(x) = [ih, x]
with h ∈M(A)sa. If A is simple then all derivations are inner (Sakai).

Definition 2.2 A (non-degenerate) representation π of A is α-covariant if there is a
unitary flow U on Hπ such that t 7→ Ut is weakly continuous and

παt(x) = Utπ(x)U∗
t , x ∈ A, t ∈ R.

There are always covariant representations (since representations of the crossed prod-
uct give such representations). But it is a non-trivial question to ask whether there is a
covariant irreducible (or type II or type III factor) representation (in case A is simple).

**

Theorem 2.3 Consider the following conditions on α.

1. α is almost uniformly continuous.

2. α is universally weakly inner.

3. α∗ on A∗ is strongly continuous, i.e., ‖φαt − φ‖ → 0 as t→ 0 for φ ∈ A∗.

4. Any irreducible representation of A is α-covariant.

5. There is a net (hν) in Asa such that Ad ithν(x) → αt(x) uniformly in t on every
bounded set of R and for all x ∈ A and simultaneously eithν weakly∗ converges to Ut

in A∗∗ uniformly in t on every bounded set of R, where U is a unitary flow in A∗∗

as in (2).

6. α is inner.

7. α is uniformly continuous.

Then (1)–(5) are equivalent. Moreover if A is simple then (1)–(6) are equivalent. If
A is simple and unital all conditions are equivalent.

Note: (2)⇔(5) from Brown-Elliott.
**
The proofs are not trivial, but the above flows are kind of trivial. One reason for that

is they have trivial Borchers spectrum. Let

K1(R) = {f ∈ L1(R) | supp(f̂) is compact}.
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Definition 2.4 For f ∈ K1(R) and x ∈ A define αf : A→ A by

αf (x) =

∫
f(t)αt(x)dt.

For x ∈ A define the α-spectrum of x by

Spα(x) = the kernel of {f ∈ K1(R) | αf (x) = 0}.

For a closed subset of F of R let

Aα(F ) = {x ∈ A | Spα(x) ⊂ F}.

The Arveson spectrum Sp(α) of α is the smallest closed subset F satisfying Aα(F ) = A.
Note that Sp(α) = −Sp(α).

Definition 2.5 The Connes spectrum RC(α) (resp. the Borchers spectrum RB(α))
is ⋂

B

Sp(α|B),

where B runs over all the non-zero α-invariant hereditary C∗-subalgebras of A (resp. those
which generate essential ideals of A).

**

Remark 2.6 When A is separable, the Connes spectrum is also given by

RC(α) =
⋂
I

⋂
u

Sp(Adu(α⊗ id)|I ⊗K)

where I runs over the α-invariant ideals of A and u runs over the α ⊗ id-cocycles in
M(I ⊗K).

A similar equality holds for the Borchers spectrum RB(α) by inserting ”essential” in
front of ideals.

Remark 2.7 RC(α) is a closed subgroup of R, RB(α) is a closed subset such that
nRB(α) ⊂ RB(α) for all n ∈ Z, and RB(α) ⊃ RC(α).

Both RC(α) and RB(α) are invariant under cocycle perturbations.
If A is α-prime then RC(α) = RB(α).
The crossed product A ×α R is prime if and only if A is α-prime and RC(α) = R.

(Olesen-Pedersen)

Proposition 2.8 If α is almost uniformly continuous then

RB(α) = {0}.
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Proof. If α is uniformly continuous then Sp(α) is bounded. If α is almost uniformly
continuous then one finds an α-invariant hereditary C∗-subalgebra B of A such that α|B
is uniformly continuous and B generates an essential ideal of A. Since RB(α) ⊂ Sp(α|B),
one deduces RB(α) = 0.

**
We often derive the condition RC(α) = R from a stronger condition:

Definition 2.9 We call α profound if for each p ∈ R there is a sequence (zn) in A such
that ‖zn‖ = 1,

Spα(zn) ⊂ (p− 1/n, p+ 1/n),

‖[zn, x]‖ → 0, x ∈ A,

and
‖znx‖ → 0⇒ x = 0, x ∈ A.

Proposition 2.10 If α is profound then RC(α) = R.

Proof. Let B be a non-zero α-invariant hereditary C∗-subalgebra. Let e ∈ B+ be such
that Spα(e) ⊂ (−ε, ε). Let (zn) be as in the above definition. Then ezne 6= 0 for all large
n. Hence Sp(α|B) ∩ (p− ε, p+ ε) 6= ∅. Thus Sp(α|B) = R.

Besides the Connes and Borchers spectra of α we also have other similar invariants: the
von Neumann algebra versions of the induced flow in an α-covariant tracial representation
if there is such.

**
Thus almost uniformly continuous flows locate at one end of the gamut of flows. At

the other end there are flows of the following kind:

Definition 2.11 We call α Rohlin if for any finite subset F of A, p ∈ R, and ε > 0
there is a unitary u ∈M(A) such that

‖αt(u)− eiptu‖ < ε, t ∈ [−1, 1],

and
‖[u, x]‖ < ε, x ∈ F

This says that the central α-cocycle t 7→ eipt is trivial, i.e., can be approximated by
a sequence of coboundaries t 7→ u∗nαt(un) with (un) a central sequence of unitaries. This
would entail that any α-cocycle is trivial, which is a strong property on α we can explore.

**
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Remark 2.12 There are Rohlin flows on the Cuntz algebra O∞ and so on Kirchberg
algebras (because A ∼= A⊗O∞ for such A).

There are Rohlin flows on a unital simple AT algebra A of real rank zero if the tracial
state space T (A) is finite-dimensional and the rank of K1(A) is more than one.

There are no Rohlin flows on AF algebras. (If A has a unit and has an α-invariant
tracial state then the map U(A) 3 u 7→ iτ(u∗δα(u)) ∈ R induces a map from K1(A) into
R. If α is a Rohlin flow then its range must be dense.)

Remark 2.13 If α is a Rohlin flow then RC(α) = R. Moreover the strong Connes
spectrum is R (or the ideals of the crossed product A ×α R are all invariant under the
dual flow α̂).

**

3 Flows in between

Definition 3.1 We call α approximately inner if for any finite subset F of A and
ε > 0 there is an h ∈ Asa such that ‖αt(x)− Ad eith(x)‖ < ε for t ∈ [−1, 1].

We call α asymptotically inner (or continuously approximately inner) if there is a
continuous function h : [0,∞)→ Asa such that

αt = lim
t→∞

Ad eith(s)(x), x ∈ A.

Proposition 3.2 (Sakai) Let α be a flow on an AF algebra. Then there is an incresing
sequence (An) of finite-dimensional C∗-subalgebras of A with dense union in A such that

D(δα) ⊃
⋃
n

An,

where δα is the generator of α. Hence there is hn ∈ Asa such that δα|An = ad ihn|An.

It is tempting to conclude that Ad eithn → αt. But this would not follow automatically
unless

⋃
nAn is dense in the Banach ∗-algebra D(δα) (or D(δα) is approximately finite-

dimensional as a Banach algebra). But in general it is not even if α is approximately
inner.

**
If A is separable and α is approximately inner then there is a sequence (hn) in A such

that
Ad eithn(x)→ αt(x)

uniformly in t on every compact subset of R. This is equivalent to saying that: the
generator δα is the graph limit L of the sequence ad ihn of inner derivations.
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Here L is defined as follows: x ∈ D(L) if there is a sequence (xn) in A such that
xn → x and ad ihn(xn) converges and then L(x) = lim ad ihn(xn). However well you may
choose the sequence (hn)

D = {x ∈ D(δα) | lim ad ihn(x) = δα(x)}

does not equal D(δα) nor contain all the elements of compact α-spectra if RC(α) 6= 0 and
(A,α) has a faithful family of covariant irreducible representations (the latter condition
may follow from the approximate innerness but I could not prove).

Maybe because of this we still do not have an intrinsic definition of approximate
innerness.

Remark 3.3 Apparently asymptotical innerness implies that approximate innerness.
All the known examples of approximately inner flows are asymptotically inner (if the

C∗-algebra is separable).

**

Theorem 3.4 Let A be a separable C∗-algebra. Then A is antiliminary if and only if
there is an asymptotically inner flow α such that α is profound.

Proof. There is a sequence (πn) of irreducible representations of A such that Ran(πn)∩K =
{0} and

⋂
n Ker(πn) = {0}. We construct a flow α such that each πn is covariant under

α. The construction of α is based on the following lemma.

Lemma 3.5 Let A be a separable C∗-algebra and let (an) be a dense sequence in A. Let
(hn) be a sequence in Asa such that

‖hn‖ ≤ 1,
‖[hn, am]‖ ≤ 2−n‖am‖, m ≤ n,
‖[hn, hm]‖ ≤ 2−n, m < n.

Let Hn =
∑n

k=1 hk. Then Ad eitHn(x) converges as n → ∞ for all x ∈ A and defines a
flow on A.

We choose a unit vector ηn from Hπ. We will construct a central sequence (vn) in A
such that πk(hn)ηk = 0 for k ≤ n, ‖πk(vm)ηk‖ ≈ 1 for k ≤ m, and

πk(hnvm)ηk ≈ 0, m < n, k ≤ n,

and
πk(hnvn)ηk ≈ λnπk(vn)ηk, k ≤ n,

where (λn) is a prescribed dense sequence in (0, 1). This will ensure that α is profound.

**
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Remark 3.6 In the above construction we can interpolate linearly between Hn and Hn+1

to show that α is asymptotically inner. In this way we can construct a flow α on any
separable antiliminary C∗-algebra A such that RC(α) = R. But we do not know if there
are infinitely many cocycle conjugacy classes of flows on A.

The condition of asymptotical innerness was introduced to solve the following lifting
problem.

Theorem 3.7 Let A be a C∗-algebra and I an ideal of A. Let B = A/I be the quotient
of A by I with Q the canonical map of A onto B. If β is an asymptotically inner flow on
B then there is an asymptotically inner flow α on A such that

Qα = βQ

and α|I is universally weakly inner.

A natural question I have not solved yet is: If α is a flow on A such that α|I is
asymptotically inner and the induced flow on B = A/I is asymptotically inner, then is α
asymptotically inner? The converse certainly holds.

**

Example 3.8 We consider a quantum spin system over the d-dimensional lattice Zd.
We define, as an observable algebra,

A =
⊗
n∈Zd

An

where An = M2 (or any matrix algebra). We naturally have the action γ of Zd on A such
that γn(Am) = Am+n. For each finite subset Λ ⊂ Zd let AΛ =

⊗
n∈ΛAn as a subalgebra

of A.
Let Φ be a function from the finite subsets of Zd into Asa such that Φ(Λ) ∈ AΛ and

γn(Φ(Λ)) = Φ(Λ + n). We call Φ an interaction.
Define for each finite subset Λ ⊂ Zd

H(Λ) =
∑
X⊂Λ

Φ(X),

which is called a local Hamiltonian.
Suppose that

‖Φ‖λ =
∞∑

k=0

eλk
∑

X30, |X|=k+1

‖Φ(X)‖ <∞

for some λ > 0. (In particular more restrictively suppose that Φ is of finite range, i.e.,
Φ(X) = 0 whenever the diameter of X is greater than some constant.) Then a flow αΦ

on A can be defined by the limit

Ad eitH(Λ)(x)→ αΦ
t (x)
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as Λ ↑ Zd. The flow αΦ is asymptotically inner.
We will refer to this type of flows as quantum spin flows.

**
Let T be a bounded operator on a Hilbert space H. T is called quasi-diagonal if

there is an increasing sequence (En) of finite-rank projections on H such that

En → 1,

and
‖[En, T ]‖ → 0.

If T is self-adjoint then T is quasi-diagonal. If T is an unbounded self-adjoint operator
we can still say that T is quasi-diagonal (due to the Weyl-von Neumann theorem).

This notion can be extended to a set of bounded operators.
When A is a C∗-algebra, A is called quasi-diagonal if there is a faithful represen-

tation π of A such that π(A) is quasi-diagonal. Easy examples include AF algebras and
commutative C∗-algebras.

We extend this notion to flows in two ways.
**

Definition 3.9 Given a Hilbert space H, let A be a norm-closed ∗-algebra of bounded
operators on H and let U be a unitary flow on H such that UtxU

∗
t ∈ A for t ∈ R and

t 7→ UtxU
∗
t is norm-continuous for any x ∈ A.

We call (A,U) to be quasi-diagonal if for any finite set F of A, any finite set ω of
H, and ε > 0 there is a finite-rank projection E on H such that

‖[E, x]‖ ≤ ε‖x‖, x ∈ F ,

‖(1− E)ξ‖ ≤ ε‖ξ‖, ξ ∈ ω,
and

‖[E,Ut]‖ < ε, t ∈ [−1, 1].

We call (A,U) to be pseudo-diagonal if for any finite set F of A, any finite set ω
of H, and ε > 0 there is a finite-rank projection E on H and a unitary flow V on EH
such that

‖[E, x]‖ ≤ ε‖x‖, x ∈ F ,
‖(1− E)ξ‖ ≤ ε‖ξ‖, ξ ∈ ω,

and
‖EUtxU

∗
t E − VtExEV

∗
t ‖ ≤ ε‖x‖, x ∈ F , t ∈ [−1, 1].

Let A be a C∗-algebra and let α be a flow on A. We call α to be quasi-diagonal
(resp. pseudo-diagonal) if (A,α) has a covariant representation (π, U) on a Hilbert
space Hπ, with π faithful and non-degenerate, such that (π(A), U) is quasi-diagonal (resp.
pseudo-diagonal).
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**
Note that α being quasi-diagonal or pseudo-diagonal is much stronger than A ×α R

being diagonal.

The condition ‖[E,Ut]‖ < ε, t ∈ [−1, 1] in the definition of quasi-diagonality can be
replaced by

‖[E,H]‖ < ε,

where H is the self-adjoint generator of U : Ut = eitH .

Remark 3.10 If α is quasi-diagonal (resp. pseudo-diagonal) and B is an α-invariant
C∗-subalgebra of A, then α|B is quasi-diagonal (resp. pseudo-diagonal).

This kind of property is not at all clear for approximately inner flows.

The following three theorems can be proved by adopting Voiculescu’s arguments to
the present situation.

**

Theorem 3.11 Let α be a flow on a C∗-algebra A. Then the following conditions are
equivalent:

1. α is quasi-diagonal.

2. For any finite subset F of A and ε > 0 there is a finite-dimensional C∗-algebra B,
a flow β on B, and a CP map φ of A into B such that

‖φ‖ ≤ 1, ‖φ(x)‖ ≥ (1− ε)‖x‖,

‖φ(x)φ(y)− φ(xy)‖ ≤ ε‖x‖‖y‖, x, y ∈ F ,

and
‖βtφ− φαt‖ < ε, t ∈ [−1, 1].

3. For any finite subset F of A and ε > 0 there is a covariant representation (π, U) as
well as a finite-rank projection E on Hπ such that

‖Eπ(x)E‖ ≥ ‖x‖ − ε,

‖[E, π(x)]‖ ≤ ε‖x‖, x ∈ F ,

and
‖[E,Ut]‖ < ε, t ∈ [−1, 1].

**

Theorem 3.12 Let α be a flow on a C∗-algebra A. Then the following conditions are
equivalent:
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1. α is pseudo-diagonal.

2. For any finite subset F of A and ε > 0 there is a finite-dimensional C∗-algebra B,
a flow β on B, and a CP map φ of A into B such that

‖φ‖ ≤ 1, ‖φ(x)‖ ≥ (1− ε)‖x‖,

‖φ(x)φ(y)− φ(xy)‖ ≤ ε‖x‖‖y‖, x, y ∈ F ,
and

‖βtφ(x)− φαt(x)‖ ≤ ε‖x‖, x ∈ F , t ∈ [−1, 1].

3. For any finite subset F of A and ε > 0 there is a covariant representation (π, U), a
finite-rank projection E on Hπ, and a unitary flow V on EHπ such that

‖Eπ(x)E‖ ≥ (1− ε)‖x‖,

‖[E, π(x)]‖ ≤ ε‖x‖, x ∈ F ,
and

‖EUtπ(x)U∗
t E − VtEπ(x)EV ∗

t ‖ ≤ ε‖x‖, x ∈ F , t ∈ [−1, 1].

**

Theorem 3.13 Let α be a quasi-diagonal (resp. pseudo-diagonal) flow on A. Then for
any covariant representation (ρ, V ) of A such that ρ × V is a faithful representation of
A ×α R and Ran(ρ × V ) ∩ K(Hρ) = {0}, (ρ(A), V ) is quasi-diagonal (resp. pseudo-
diagonal).

This follows by slightly modifying the proof of Voiculescu’s Weyl-von Neumann theo-
rem. It is not too difficult to handle one unbounded self-adjoint operator associated with
A×α R in addition to itself.

**

Definition 3.14 Let A be a UHF algebra and α a flow α on A. We call α a UHF flow
if there is a sequence (kn) of integers such that kn ≥ 2 and

A =
∞⊗

n=1

Mkn

and
αt =

⊗
Ad eithn ,

where hn ∈ (Mkn)sa.

Going back to the quantum spin flows, if the interaction Φ satisfies that Φ(X) = 0
whenever |X| > 1 then αΦ is a UHF flow.

**
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Definition 3.15 Let A be an AF algebra and α a flow on A. We call α an AF flow if
there is an increasing sequence (An) of finite-dimensional C∗-subalgebras of A with dense
union such that

αt(An) = An.

We call α an approximate AF flow if there is an increasing sequence (An) of finite-
dimensional C∗-subalgebras of A with dense union such that

sup
t∈[0,1]

dist(An, αt(An))→ 0

as n→∞

When B and C are subsets of A and δ > 0 we write B
δ
⊂ C if for any x ∈ B there is

y ∈ C such that ‖x− y‖ ≤ δ‖x‖. The distance of B and C is defined by

dist(B,C) = inf{δ > 0 | B
δ
⊂ C, C

δ
⊂ B}.

Proposition 3.16 Let α be a flow on an AF algebra. Then α is an approximate AF flow
if and only if it is a cocycle perturbation of an AF flow.

The ”if” part is almost obvious. The difficult part is the ”only if”; the proof I have is
rather roundabout.

**
In the case of quantum spin flows if the interaction is of finite range and

Φ(Λ) ∈
⊗
n∈Λ

Dn = AΛ ∩D

where Dn is the diagonal matrices of An = M2 and D is the C∗-subalgebra generated by
all Dn, then αΦ is an AF flow.

(Suppose that Φ(X) = 0 if the diameter of X is greater than K > 0. Let Λ be
a finite subset of Zd. The C∗-subalgebra generated by AΛ and Dn with n within the
K-neighborhood of Λ is left invariant under αΦ.)

Remark 3.17 The AF flows already form a rich class of flows. We do not know to this
day if there is a quantum spin flow which is not an approximate AF flow.

**

Proposition 3.18 If α is an AF flow then α is quasi-diagonal.

Proof. We choose a maximal abelian C∗-subalgebra Dn of An∩A′n−1 such that αt|Dn = id
and let D be the C∗-subalgebra generated by all Dn, which is a maximal abelian C∗-
subalgebra of A. Let φ be a character of D which extends to a pure α-invariant state of
A.
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Let (πφ, U
φ) be the GNS representation;

Uφ
t πφ(x)Ωφ = πφαt(x)Ωφ, x ∈ A.

Let En be the finite-rank projection onto πφ(An)Ωφ. Then

[En, πφ(x)] = 0, x ∈ An,

and
[En, U

φ
t ] = 0.

In the case of quantum spin flows if Φ(X) ∈
⊗

n∈X Dn without the condition of finite
range, we still have the above conclusion. In this case αΦ may not be an AF flow; but of
more general kind of AF flow.

**

Proposition 3.19 If α is an approximately inner flow on a quasi-diagonal C∗-algebra
then α is pseudo-diagonal.

Proof. We suppose that A acts non-degenerately on a Hilbert space H such that A is a
quasi-diagonal set of B(H).

Let F be a finite subset of A and ε > 0. By the assumption there is an h = h∗ ∈ A
such that ‖αt(x)− Ad eith(x)‖ ≤ ε/3‖x‖ for x ∈ F and t ∈ [−1, 1]. There is a finite-rank
projection E on H such that ‖ExE‖ ≥ (1 − ε)‖x‖ and ‖[E, x]‖ ≤ ε‖x‖ for x ∈ F , and
‖[E, h]‖ < ε/3. Since ‖EeithE − eitEhEE‖ < ε/3 for t ∈ [−1, 1], it follows that

‖Eαt(x)E − Ad eitEhE(ExE)‖ ≤ ε‖x‖, x ∈ F .

Note also that ‖ExEyE − ExyE‖ ≤ ε‖x‖‖y‖ for x, y ∈ F . By setting B = B(EH),
βt = Ad eitEhE, and φ(x) = ExE, we obtain the desired objects for (F , ε).

Proposition 3.20 Let A denote the gauge-invariant CAR algebra. Then any flow on A
is quasi-diagonal.

Proof. There is a decreasing sequence (In) of ideals in A such that A/I1 ∼= C, In−1/In ∼= K
for n 1, and

⋂
n In = {0}.

**

Proposition 3.21 Let Ω be a compact Hausdorff space and α a flow of homeomorphisms
of Ω. If α has no fixed points then the induced flow on C(Ω) is not pseudo-diagonal.

Proof. The proof uses the existence of KMS states which follow from pseudo-diagonality.
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Proposition 3.22 Let D denote the unit disk {z ∈ C | |z| ≤ 1} and define a flow α by
αt(z) = eitz. Then the induced flow on C(D) is quasi-diagonal.

When the C∗-algebra is quasi-diagonal the relations among the four notions are

Asymptotically inner ⇒ Approximately inner
⇓

Quasi− diagonal ⇒ Pseudo− diagonal

**

4 Cocycles

If α is a flow on A, then α extends to a one-parameter automorphism group of M(A)
such that t 7→ αt(x) is continuous in the strict topology for x ∈ M(A). We denote such
an extension by the same symbol α.

Definition 4.1 Let α be a flow on a C∗-algebra A. We call u an α-cocycle (in M(A))
if u is a continuous function of R into the unitary group of M(A) such that usαs(ut) =
us+t, s, t ∈ R. Moreover if ut ∈ A+ C1 then we call u an α-cocycle in A.

Let w be a unitary. Then t 7→ wαt(w
∗) is an α-cocycle, called a coboundary. More

generally if u is an α-cocycle and w is a unitary, then

t 7→ wutαt(w
∗)

is an α-cocycle.

Let h ∈ Asa and define

ut =
∞∑

n=0

in
∫

Ωn

αt1(h)αt2(h) · · ·αtn(h)dt1 · · · dtn,

where if t ≥ 0
Ωn = {(t1, . . . , tn) | 0 ≤ t1 ≤ t2 ≤ · · · ≤ tn ≤ t}

and if t ≤ 0 similarly. Then ut is differentiable and satisfies dut/dt = utiαt(h). Then one
deduces that u is an α-cocyle in A.

If u is an α-cocycle then we denote by Aduα the flow t 7→ Adutα on A. If u is
differentiable and ih = dut/dt|t=0 then Aduα is generated by δα + ad ih.

**

Proposition 4.2 Suppose that A is unital and let u be an α-cocycle. Then for any ε > 0
there is an analytic cocycle v and a unitary w such that ‖w − 1‖ < ε and

ut = wvtαt(w
∗).
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Proof. We define a flow γ on A⊗M2 by

γt

(
x11 x12

x21 x22

)
=

(
αt(x11) αt(x12)u

∗
t

utαt(x21) utαt(x22)u
∗
t

)
.

Note that γt(e21) = ute21. There is a γ-analytic element x such that x = e22xe11 and
‖x − e21‖ ≈ 0. We may replace x by x(x∗x)−1. Let x = w ⊗ e21 where w ∈ U(A). Then
t 7→ utαt(w) is analytic. Thus vt = w∗utαt(w) is an analytic α-cocycle.

Proposition 4.3 Suppose that A is unital and let u be an α-cocycle. Then for any ε > 0
there is an entire non-unitary cocycle v and an invertible element w such that ‖w−1‖ < ε
and

ut = wvtαt(w
−1).

Proof. In the above proof if we drop the condition that w ∈ U(A) then we can assume
that t 7→ γt(x) = utαt(w)⊗ e21 is entire for x = w ⊗ e21. Then vt = w−1utαt(w) satisfies

vsαs(vt) = w−1usαs(w)αs(w
−1utαt(w)) = vs+t.

**

Theorem 4.4 Let u be an α-cocycle in M(A), p ∈ A, and ε > 0. Then there is an
α-cocycle v in A such that

‖(ut − vt)p‖ < ε, t ∈ [−1, 1].

Proof. If there is an e ∈ Asa such that ep ≈ p, eutp ≈ utp, δα(e) ≈ 0, and t 7→ eute is
differentiable then we set

d(eute)/dt|t=0 = ih.

Since h∗ = h we define an α-cocycle v by

dvt/dt = vtαt(ih)

with v0 = 1. Then it would follow that utp ≈ vtp. The main problem is to find such an e
(for an α-cocycle close to u).

**

Proposition 4.5 The four properties, approximate innerness, asymptotic innerness, pseudo-
diagonality, quasi-diagonality, are invariant under cocycle perturbation.

Proposition 4.6 Let B be an α-invariant hereditary C∗-subalgebra of A. Then the fol-
lowing hold:
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1. If α is approximately inner then α|B is approximately inner.

2. If B generates A as an ideal then the converse holds.

The above statements holds for pseudo-diagonality and quasi-diagonality (instead of
approximate innerness).

If each of A and B have a strictly positive element, the above statements hold for
asymptotical innerness (instead of approximate innerness).

**

5 KMS states

Let A be a unital C∗-algebra and α a flow on A.

Definition 5.1 Let c ∈ R. A state ω on A is called an α-KMS state at c if ωαt = ω
for t ∈ R and ω(xy) = ω(yαic(x)) for all α-entire x, y ∈ A.

In the above definition if c 6= 0 then the invariance ωαt = ω follows from the other
part of the condition. If c = 0 then the KMS state is an α-invariant tracial state.

Proposition 5.2 A state ω on A is a KMS state at c > 0 if and only if for any x, y ∈ A
there is a bounded continuous function f on Cc = {z ∈ C | 0 ≤ =(z) ≤ c} such that f is
holomorphic in the interior of Cc and

f(t) = ω(yαt(x)), t ∈ R,

and
f(t+ ic) = ω(αt(x)y), t ∈ R.

**

Definition 5.3 A state ω is called a α-ground state (resp. α-ceiling state) if

−iω(x∗δα(x)) ≥ 0 (resp. ≤ 0)

for x ∈ D(δα).

In the above the invariance ωαt = ω follows automatically. (If x = x∗ ∈ D(δα) then
ωδα(x2) = ω(δα(x)x) + ω(xδα(x)) = 0.)

If ω is a ground state then by defining a unitary flow U on the GNS representation
space associated with ω by

Utπω(x)Ωω = πωαt(x)Ωω, x ∈ A,

we derive that H ≥ 0, where H is the self-adjoint generator of U , from −iω(x∗δα(x)) =
〈πω(x)Ωω, Hπω(x)Ωω〉.
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Proposition 5.4 A state ω is a ground state if and only if for any x, y ∈ A there is a
bounded continuous function f on C∞ = {z ∈ C | =(z) ≥ 0} such that f is holomorphic
in the interior of C∞ and

f(t) = ω(xαt(y)), t ∈ R.

**
If A = Mn then any flow α on A is given as αt = Ad eith for some h ∈ Asa. For c ∈ R

define a state ωc on A by

ωc(x) = Tr(xe−ch)/Tr(e−ch), x ∈ A,

where Tr is the trace on A = Mn.
Then ωc is a unique α-KMS state at c. This follows by computation:

ωc(yαic(x)) = CTr(ye−chxeche−ch) = CTr(xye−ch) = ωc(xy)

where C = Tr(e−ch)−1. If ω is a KMS state, then letting ρ ∈ A with ω(·) = Tr(ρ·) we
compute:

Tr(ρxy) = Tr(ρye−chxech) = Tr(e−chxechρy), x, y ∈ A,

which entails echρ = c1 for some c > 0.
**

Proposition 5.5 If α is a UHF flow then it has a unique KMS state for all c ∈ R.

Proof. If αt =
⊗

Ad eithn on A =
⊗

Mkn , then the KMS state ω at c is obtained as the
infinite tensor product ⊗

n

Tr( · e−chn)/Tr(e−chn).

Let α be an AF flow on a unital AF algebra A and let (An) be an increasing sequence
of finite-dimensional C∗-subalgebras of A with dense union such that αt(An) = An. Let
Zn = An ∩ A′n and Zn

∼= Ckn . Let ω be a KMS state of A. Then ω|An is determined
by ω|Zn which corresponds to a point in the kn − 1 simplex ∆n. Denoting the map
∆n+1 → ∆n by Sn (giving φ|Zn+1 7→ φ|Zn with φ a KMS state on An+1) we conclude that
the set of KMS states of A is given as the projective limit of

∆1
S1← ∆2

S2← ∆3 ← · · · .

Thus the KMS states of an AF flow are describable in a sense.

Remark 5.6 If α is a Rohlin flow on a unital C∗-algebra, then α has no KMS states at
non-zero c. (If u is a unitary such that αt(u) ≈ eitpu and ω is a KMS state at c, then
1 = ω(uu∗) = ω(u∗αic(u)) ≈ e−pc.)
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**

Proposition 5.7 Suppose that α is a pseudo-diagonal flow on a unital C∗-algebra A.
Then α has a KMS state for all inverse temperatures including ±∞.

Proof. Let F be a finite subset F of A and ε > 0. For each (F , ε) we have a flow β on a
finite-dimensional C∗-algebra B and a CP map φ of A into B such that

φ(1) = 1, ‖φ(x)‖ ≥ (1− ε)‖x‖

‖φ(x)φ(y)− φ(xy)‖ ≤ ε‖x‖‖y‖, x, y ∈ F
and

‖βtφ(x)− φαt(x)‖ ≤ ε‖x‖, x ∈ F , t ∈ [−1, 1].

Here we have replaced the condition ‖φ‖ ≤ 1 by φ(1) = 1 since A is unital.
There is a self-adjoint h ∈ B such that βt = Ad eith. We fix γ ∈ R and define a state

ϕ on B by
ϕ(Q) = Tr(e−γhQ)/Tr(e−γh),

where Tr is a trace on B. Then we know that ϕ is a KMS state on B with respect to β
at inverse temperature γ.

We set a state f(F ,ε) on A by ϕφ, where ϕ and φ depend on (F , ε). Let f be a weak∗-
limit point of f(F ,ε), where the set X of (F , ε) is a directed set in an obvious way. We
fix a Banach limit ψ on L∞(X) such that f(x) is the ψ limit of (F , ε) 7→ f(F ,ε)(x) for
x ∈ A. Note that f(xαt(y)) is the ψ limit of (F , ε) 7→ ϕ(φ(xαt(y))), which is close to
ϕ(φ(x)βtφ(y)) around ∞. Thus one can conclude that f is a KMS state at γ.

A similar proof works for a KMS state for γ = ±∞ (or a ground state and ceiling
state).

**

Lemma 5.8 Let u be an α-cocycle and express u as ut = wvtαt(w
−1) where v is an entire

non-unitary α-cocycle. For a state ω of A and c ∈ R define a state ω′ on A by

ω′(a) =
ω(w−1awvic)

ω(vic)
.

If ω is a KMS state at c with respect to α then ω′ is a KMS state at c with respect to
Aduα.

Proof. Note ω(vic) > 0. This follows formally since

ω(vic) = ω(w−1wvic) = ω(wvicαic(w)) = ω(uic),

which is positive because t 7→ ω(ut) is positive-definite. This is because

ω(uti−tj) = ω(utiαti(u−tj)) = ω(α−ti(uti)α−tj(u
∗
tj
)).
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The numerator for a = x∗x is non-negative because

ω(w−1x∗xwvic) = ω(x∗xuic) = ω(xuicαic(x
∗))

and t 7→ ω(xutαt(x
∗)) is positive-definite.

Let α′ = Aduα. Formally ω(vic)ω
′(xy) equals

ω(w−1xywvic) = ω(ywvicαic(w
−1)αic(x)).

Since α′ic(x) = wvicαic(w
−1)αic(x)αic(w)v−1

ic w
−1, this equals

ω(yα′ic(x)wvicαic(w
−1)) = ω(w−1yα′ic(x)wvic)

which is ω′(yα′ic(x)).

**

Definition 5.9 Let α be a flow on a unital C∗-algebra. We define Kα ⊂ R× A∗ by

Kα = {(c, ω) | ω is a KMS functional at c},

where KMS functional means KMS state multiplied by a non-negative constant. Then K
is a closed subset of R×A∗ and each section at c ∈ R is a lattice. We call Kα the KMS
field for α.

Proposition 5.10 Let u be an α-cocycle. Then the KMS fields for α and for Aduα are
isomorphic.

Proof. When ut = wvtα(w−1) as in the previous lemma, the desired map is given by

ω 7→ ω(w−1 · wvic).

**

6 Ideals of A×α R

Let α be a flow on a unital C∗-algebra. The dual flow α̂ is a flow on the crossed product
A×α R. By the Takesaki-Takai duality (A×α R, α̂) is a complete invariant for the cocycle
perturbations of α.

If α has a ground state then it induces a covariant representation (π, Ut = eitH) such
that H ≥ 0. Then the representation π×U of the crossed product A×α R is not faithful.
Since

(π × U)(λ(f)) =

∫
eitHf(t)dt = f̂(−H),
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the kernel contains λ(f), f ∈ K1(R) with supp(f̂) ⊂ (0,∞). If I is the ideal of A×α R
generated by such λ(f), then t 7→ α̂t(I) is decreasing and I satisfies⋃

t

α̂t(I) = A×α R

and ⋂
t

α̂t(I) = {0}.

If α has a ceiling state then A×α R has an ideal J such that t 7→ α̂t(J) is increasing from
{0} to A×α R.

**

For λ > 0 and an α-invariant hereditary C∗-subalgebra B of A we denote by Bλ the
C∗-subalgebra of B generated by Bα(−λ, λ), where α also denotes the restriction of α to
B. Note that λ 7→ Bλ is increasing, where Bα(U) is the closure of {x ∈ B | Spα(x) ⊂ U}
for an open set U .

Definition 6.1 We say that α satisfies the no energy gap condition if the following
holds: Bλ = B for any λ > 0 and for any α-invariant hereditary C∗-subalgebra B of A.

Let α be a UHF flow on A =
⊗

nM2 of the form

αt =
⊗

n

(
eitλn 0

0 1

)
.

If λn → 0 and
∑

n |λn| =∞ then α satisfies the no energy gap condition.

Proposition 6.2 Suppose that λn → 0 and
∑

n |λn|2 =∞ in the above description of α.
If β is a flow on B then the flow α⊗ β on A⊗B satisfies the no energy gap condition.

**

Theorem 6.3 Let α be a flow on a C∗-algebra A. Suppose that for each t 6= 0 A is
αt-simple and T(αt) = T. Then the following conditions are equivalent:

1. α satisfies the no energy gap condition.

2. All primitive ideals of A×α R are monotone under α̂.

3. For any B ∈ Hα(A) and for any inner perturbation of β of α|B, B(0,λ) is independent
of λ > 0 and B(−λ,0) is independent of λ > 0, where

BV = Bβ(V )∗BBβ(V )

for any open subset V of R.

Moreover if the above conditions are satisfied, then RC(α) = R (or A×α R is prime).

**
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7 Traces on A×α R

Definition 7.1 Let B be a non-unital C∗-algebra. A trace on B is a function τ : B+ →
[0,∞] such that

1. τ(γx) = ατ(x), x ∈ B+, γ ∈ R+;

2. τ(x+ y) = τ(x) + τ(y), x, y ∈ B+;

3. τ(u∗xu) = τ(x), x ∈ B, u ∈ B̃.

We say that τ is densely-defined if Bτ
+ = {x ∈ B+ | τ(x) < ∞} is dense in B+ and

that τ is lower semi-continuous if {x ∈ B+ | τ(x) ≤ γ} is closed for every γ ∈ R+.
We call τ minimal if for any x ∈ B+ \Bτ

+ and an approximate identity (ei) in Bτ
+ for

the ideal obtained as the closed linear span of Bτ
+ the net τ(x1/2eix

1/2) diverges to infinity.
Note that a lower semi-continuous densely-defined trace is minimal.

Let I be an ideal of B and let φ be a lower semi-continuous densely-defined trace
on I. Then one defines φ̄ : A+ → [0,∞] by φ̄(x) = supφ(x1/2ex1/2) where e runs over
{e ∈ Iτ

+ | ‖e‖ ≤ 1}. Then φ̄ is a minimal lower semi-continuous trace on B.
**
We impose the following condition on α:

Definition 7.2 We call α uniformly profound if for each p ∈ R there is a sequence
(xn) in A such that ‖xn‖ = 1, ‖[xn, y]‖ → 0 for y ∈ A,

Spα(xn) ⊂ (p− 1/n, p+ 1/n),

and
x∗nxn + xnx

∗
n > 1/2.

The above condition on α is much stronger than profoundness (and RC(R) = R). If
φ is a KMS state then the above condition implies that πφ(A)” is of type III.

For a sequence (λn) in R let α be the UHF flow on M2∞ given by the infinite tensor
product of Ad(eiλnt ⊕ 1). Suppose that λn → 0. Then∑

n

λ2
n =∞

if and only if α is uniformly profound. The tensor product α⊗ β with any flow β is also
uniformly profound.

**
We denote by A×α R the crossed product of A by α. The canonical unitary multiplier

flow of A×α R, denoted by λt, t ∈ R, satisfies that

λta = αt(a)λt, a ∈ A.

Recall K1(R) = {f ∈ L1(R) | supp(f̂) is compact}. For f ∈ K1(R) we write λ(f) =∫
f(t)λtdt.
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Lemma 7.3 Suppose that A is unital and that α is uniformly profound. Let τ be a
non-zero lower semi-continuous densely-defined trace on A×α R such that the GNS rep-
resentation πτ is factorial. Then there are c ∈ R and C > 0 and a KMS state ω on A at
c such that

τ(aλ(f)) = Cω(a)

∫
f̂(q)e−cqdq

for f ∈ K1(R). Moreover it follows that τ α̂p = e−cpτ for p ∈ R.

Proof. Since τ is well-defined on λ(f), f ∈ K1(R), there is a Radon measure µ on R
such that

τ(λ(f)) =

∫
f̂(q)dµ(q), f ∈ K1(R).

Let (xn) be a sequence in A for p ∈ R as in the definition of uniform profoundness.
Since ‖λtxn − eiptxnλt‖ → 0, it follows that for any f ∈ K1(R)

‖λ(f)xn − xnλ(χpf)‖ → 0,

where χp(t) = eipt. Let zn = λ(f)xnx
∗
nλ(f) − xnλ(χpf)λ(χpf)∗x∗n, which converges to

zero in norm. If g ∈ K1(R) is such that ĝ ≥ 0 and ĝ is 1 on a neighborhood of
supp(f̂), it follows that λ(g)zn = zn. Since τ(λ(g)) < ∞, we conclude that τ(zn) → 0,
i.e., τ(λ(f)xnx

∗
nλ(f)∗) − τ(λ(χpf)∗x∗nxnλ(χpf)) → 0. Since πτ is factorial and (xnx

∗
n)

and (x∗nxn) approximately commute with all elements of A ×α R, we may suppose that
πτ (xnx

∗
n)→ c11 and πτ (x

∗
nxn)→ c21 weakly. Thus we can conclude that c1τ(λ(f)λ(f)∗) =

c2τ(λ(χpf)∗λ(χpf)). Since c1 + c2 ≥ 1/2, we deduce that ci > 0. (If c1 = 0 then
τ(λ(χpf)∗λ(χpf)) = 0 for all f ∈ K1(R), i.e., τ = 0.) Set ap = c1/c2; then it follows
that dµ(· + p) = apdµ. Since ap is continuous in p and apaq = ap+q for p, q ∈ R one can
conclude that ap = e−cp for some c ∈ R. Since ecqdµ(q) is translation-invariant, one can
conclude that dµ(q) = Ce−cqdq.

Let f ∈ K1(R) be such that λ(f) ≥ 0 and define a state ωf on A by ω(a) =
τ(aλ(f))/τ(λ(f)). Using the sequence (xn) given above, we conclude that

τ(xnx
∗
naλ(f))

c1τ(λ(f))
→ ωf (a).

But the left hand side also converges to ωχpf (a) as follows by computing τ(x∗naλ(f)xn).
Thus one can conclude that ωf = ωχpf for all p ∈ R. In this way argue that ωf is
independent of f and then that it is a KMS state at c.

**

Remark 7.4 We need some condition on α to obtain the conclusion in the above lemma.
If αt = id then A×α R ∼= A⊗ C0(R) and it has many tracial states if A has. If α is the
UHF flow on A = M2∞ determined by a sequence (λn) such that λn → 0,

∑
n |λn| = ∞,

and
∑

n λ
2
n <∞, then α is profound and A×α R is prime and has tracial states.
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Suppose that there is a lower semi-continuous densely-defined trace τc for each c > 0
such that

τc(λ(f)) =

∫
e−cqf̂(q)dq.

Then by taking the limit c → ∞ we obtain a trace τ : (A ×α R)+ → [0,∞] such that
τ(λ(f)) = 0 for positive f ∈ K1(R) with suppf̂ ⊂ (0,∞) and τ(λ(f)) = ∞ for positive
f ∈ K1(R) with suppf̂ ⊂ (−∞, 0). Hence {x ∈ (A ×α R)+ | τ(x) = 0} is a non-zero
hereditary cone invariant under the inner automorphisms. Thus the linear span is a proper
ideal. One can conclude that it cannot be dense and its closure is also a proper ideal.
This is of course well-known from the existence of ground states.

Lemma 7.5 Suppose that A is simple and unital and suppose that α is uniformly pro-
found. Then any minimal lower semi-continuous trace on A×α R is densely-defined.

**
Let T (A ×α R) denote the set of lower semi-continuous densely-defined traces on

A×α R.
Since the Pedersen ideal P is the smallest dense ideal of A×α R, τ is well-defined on

P for all τ ∈ T = T (A×α R). Since τ is determined by τ |P we may regard T as a convex
cone. We equip T with the topology determined by τ 7→ τ(x), x ∈ P , which is equivalent
to the one determined by τ 7→ τ(aλ(g)), a ∈ A, g ∈ K1(R).

Proposition 7.6 Let α be a uniformly profound flow on a unital C∗-algebra A and
suppose that there is one and only one KMS state with respect to α at each c ∈ R.
Then the convex cone T (A ×α R) is isomorphic to the convex cone M of finite mea-
sures µ on R satisfying

∫
e−psdµ(s) < ∞ for all p ∈ R with the topology defined by

µ 7→
∫
e−psdµ(s), p ∈ R.

**

8 Problems

1. When α is a flow on an AF algebra (or a UHF algebra) clarify the relations among
the four conditions on α; asymptotically inner, approximately inner, quasi-diagonal,
and pseudo-diagonal.

2. Give a necessary and sufficient condition for a quantum spin flow to be an approxi-
mate AF flow.

3. Probably there are many flows α on A = M2∞ such that T (A×α R) ∼=M and the
primitive ideal space is {0} tR tR (where one of R represents an increasing ideal
under α̂ the other a decreasing). Are there many A×α R?
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4. Under the previous situation if there is another flow β which behaves in the same
way as α̂ on the primitive ideals, is β a cocycle perturbation of α̂?

5. Under the previous situation if there is a flow β which increases one primitive ideal
and decreases anther, how closely is β related to α̂?

**

6. If α is a flow on the UHF algebra M2∞ commuting with the gauge action γ of T,
can we conclude that α is quasi-diagonal or approximately inner? Here γ is given
by

γz =
⊗

Ad

(
z 0
0 1

)
.

7. For any ε > 0 is there a δ > 0 satisfying the following condition? If α is a flow
on a unital C∗-algebra A such that A ⊃ B 3 1A and B ∼= Mn for some n and if
supt∈[0,1] dist(Mn, αt(Mn)) < δ then there is an α-cocycle u such that Adutαt(Mn) =
Mn and supt∈[0,1] ‖ut − 1‖ < ε.

8. Let α be a flow on a Cuntz algebra A. Prove that α has the Rohlin property if
A×α R is purely infinite.

9. Prove that Rohlin flows on the Cuntz algebra are cocycle conjugate.

**
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